Search results for "oxyanion hole"

showing 10 items of 10 documents

Multiscale Simulations of SARS-CoV-2 3CL Protease Inhibition with Aldehyde Derivatives. Role of Protein and Inhibitor Conformational Dynamics in the …

2020

<p>We here investigate the mechanism of SARS-CoV-2 3CL protease inhibition by one of the most promising families of inhibitors, those containing an aldehyde group as warhead. These compounds are covalent inhibitors that inactivate the protease forming a stable hemithioacetal complex. Inhibitor 11a is a potent inhibitor that has been already tested in vitro and in animals. Using a combination of classical and QM/MM simulations we determined the binding mode of the inhibitor into the active site and the preferred rotameric state of the catalytic histidine. In the noncovalent complex the aldehyde group is accommodated into the oxyanion hole formed by the NH main chain groups of residues …

chemistry.chemical_classificationProteasebiologyStereochemistrymedicine.medical_treatmentActive siteHemithioacetalAldehydechemistry.chemical_compoundchemistryNucleophileCovalent bondmedicinebiology.proteinOxyanion holeHistidine
researchProduct

A theoretical study of carbon-carbon bond formation by a Michael-type addition.

2012

A theoretical study of the Michael-type addition of 1,3-dicarbonyl compounds to α,β-unsaturated carbonyl compounds has been performed in the gas phase by means of the AM1 semiempirical method and by density functional theory (DFT) calculations within the B3LYP and M06-2X hybrid functionals. A molecular model has been selected to mimic the role of a base, which is traditionally used as a catalyst in Michael reactions, an acetate moiety to modulate its basicity, and point charges to imitate the stabilization of the negative charge developed in the substrate during the reaction when taking place in enzymatic environments. Results of the study of six different reactions obtained at the three di…

Steric effectschemistry.chemical_classificationHammond's postulateAcetylacetoneMichael-type additionOrganic ChemistryProtonationAcetylacetoneRate-determining stepMichael reactionsBiochemistrychemistry.chemical_compoundNucleophilechemistryComputational chemistryCarbon–carbon bondOrganic chemistryPhysical and Theoretical ChemistryOxyanion holeαβ-unsaturated carbonylOrganicbiomolecular chemistry
researchProduct

Stereoelectronic Requirements for Optimal Hydrogen-Bond-Catalyzed Enolization

2011

Protein crystallographic analysis of the active sites of enolizing enzymes and structural analysis of hydrogen-bonded carbonyl compounds in small molecule crystal structures, complemented by quantum chemical calculations on related model enolization reactions, suggest a new stereoelectronic model that accounts for the observed out-of-plane orientation of hydrogen-bond donors (HBDs) in the oxyanion holes of enolizing enzymes. The computational results reveal that the lone-pair directionality of HBDs characteristic for hydrogen-bonded carbonyls is reduced upon enolization, and the enolate displays almost no directional preference for hydrogen bonding. Positioning the HBDs perpendicular to the…

Models MolecularHydrogen bondOrganic ChemistryHydrogen BondingStereoisomerismOxyanionGeneral ChemistryCrystal structureKeto–enol tautomerismKetonesCarbon-Carbon Double Bond IsomerasesPhotochemistrySmall moleculeCatalysisMitochondriaCatalysischemistry.chemical_compoundCrystallographychemistryHumansThermodynamicsDensity functional theoryOxyanion holeAlgorithmsChemistry - A European Journal
researchProduct

Bifunctional Acid-Base Catalysis

2011

Acid-base catalysis with bifunctional catalysts is a very prominent catalytic strategy in both small-molecule organocatalysts as well as enzyme catalysis. In both worlds, small-molecule catalysts and enzymatic catalysis, a variety of different general acids or hydrogen bond donors are used. In this chapter, important parallels between small molecule catalysts and enzymes are discussed, and a comparison is also made to the emerging field of frustrated Lewis pair catalysis.

inorganic chemicalschemistry.chemical_compoundchemistryHydrogen bondTetrahedral carbonyl addition compoundOxyanion holeBifunctionalCombinatorial chemistryFrustrated Lewis pairBifunctional catalystCatalysisEnzyme catalysis
researchProduct

Multiscale Simulations of SARS-CoV-2 3CL Protease Inhibition with Aldehyde Derivatives. Role of Protein and Inhibitor Conformational Changes in the R…

2021

We here investigate the mechanism of SARS-CoV-2 3CL protease inhibition by one of the most promising families of inhibitors, those containing an aldehyde group as a warhead. These compounds are covalent inhibitors that inactivate the protease, forming a stable hemithioacetal complex. Inhibitor 11a is a potent inhibitor that has been already tested in vitro and in animals. Using a combination of classical and QM/MM simulations, we determined the binding mode of the inhibitor into the active site and the preferred rotameric state of the catalytic histidine. In the noncovalent complex, the aldehyde group is accommodated into the oxyanion hole formed by the NH main-chain groups of residues 143 …

Stereochemistrymedicine.medical_treatment010402 general chemistry01 natural sciencesAldehydeQM/MMCatalysisQM/MM3CL proteasechemistry.chemical_compoundminimum free energy pathNucleophileinhibitorsmedicineconformational changesaldehyde derivativeschemistry.chemical_classificationProteasebiology010405 organic chemistrySARS-CoV-2Active siteHemithioacetalGeneral Chemistry0104 chemical scienceschemistryCovalent bondbiology.proteinOxyanion holeResearch ArticleACS Catalysis
researchProduct

Protein Flexibility and Preorganization in the Design of Enzymes. The Kemp Elimination Catalyzed by HG3.17

2015

A recently designed enzyme, HG3.17, obtained by directed evolution, has shown a catalytic activity close to natural enzymes. Hybrid QM/MM molecular dynamics simulations for the Kemp elimination in this new enzyme have provided a deep insight into the origin of its catalytic efficiency. In this case, we have first demonstrated the presence of different conformations with significantly different reactivity. The larger reactivity is related with a better electrostatic preorganization of the environment that creates a more favorable electrostatic potential for the reaction to proceed. In HG3.17, efforts to improve the catalytic properties must be focused in possible mutations increasing the pre…

chemistry.chemical_classificationChemistryStereochemistryGeneral ChemistryMolecular dynamicsElectrostaticsDirected evolutionCombinatorial chemistryQM/MMCatalysisCatalysisQM/MMMolecular dynamicsEnzymeEnzyme designReactivity (chemistry)Protein flexibilityKemp eliminationOxyanion hole
researchProduct

An insect juvenile hormone-specific epoxide hydrolase is related to vertebrate microsomal epoxide hydrolases.

1996

Abstract We describe the first cDNA sequence encoding a juvenile hormone-specific epoxide hydrolase from an insect. A full-length cDNA clone revealed a 462-amino-acid open reading frame encoding an amino acid sequence with 44% identity and 64% similarity to human microsomal epoxide hydrolase. All residues in the catalytic triad (residues Asp 227 -His 428 -Asp 350 in the M. sexta protein) were present, as was the conserved Trp 154 corresponding to the oxyanion hole. The surprising similarity of insect juvenile hormone epoxide hydrolase to vertebrate microsomal epoxide hydrolases, coupled with the ancient lineage of the epoxide hydrolases and haloalkane dehalogenases, suggests that this catab…

DNA ComplementaryMolecular Sequence DataBiophysicsSequence HomologyBiologyBiochemistryPolymerase Chain ReactionMiceOpen Reading FramesComplementary DNAMicrosomesCatalytic triadAnimalsHumansAmino Acid SequenceEpoxide hydrolaseMolecular BiologyPeptide sequenceConserved SequenceEpoxide HydrolasesBase SequenceCell BiologyRatsJuvenile HormonesBiochemistryMicrosomal epoxide hydrolaseEpoxide HydrolasesJuvenile hormoneRabbitsOxyanion holeBiochemical and biophysical research communications
researchProduct

Structures of yeast peroxisomal Δ(3),Δ(2)-enoyl-CoA isomerase complexed with acyl-CoA substrate analogues: the importance of hydrogen-bond networks f…

2015

Δ3,Δ2-Enoyl-CoA isomerases (ECIs) catalyze the shift of a double bond from 3Z- or 3E-enoyl-CoA to 2E-enoyl-CoA. ECIs are members of the crotonase superfamily. The crotonase framework is used by many enzymes to catalyze a wide range of reactions on acyl-CoA thioesters. The thioester O atom is bound in a conserved oxyanion hole. Here, the mode of binding of acyl-CoA substrate analogues to peroxisomalSaccharomyces cerevisiaeECI (ScECI2) is described. The best defined part of the bound acyl-CoA molecules is the 3′,5′-diphosphate-adenosine moiety, which interacts with residues of loop 1 and loop 2, whereas the pantetheine part is the least well defined. The catalytic base, Glu158, is hydrogen-bo…

Models MolecularSaccharomyces cerevisiae ProteinsDouble bondStereochemistryProtein ConformationIsomeraseSaccharomyces cerevisiaeEnoyl CoA isomeraseThioesterPhotochemistryDodecenoyl-CoA Isomerasebeta-oxidationSubstrate SpecificityStructural Biologyddc:570Catalytic DomainEnzyme StabilitySide chainMoietyta116chemistry.chemical_classificationHydrogen bondenoyl-CoA isomeraseta1182Hydrogen BondingGeneral Medicinehydrogen-bond networkcrotonaseoxyanion holechemistryAcyl Coenzyme AOxyanion holeOxidation-ReductionProtein BindingActa crystallographica. Section D, Biological crystallography
researchProduct

Revealing the Origin of the Efficiency of the De Novo Designed Kemp Eliminase HG-3.17 by Comparison with the Former Developed HG-3

2017

The design of new biocatalysts is a goal in biotechnology to improve the rate, selectivity and environmental impact of industrial chemical processes. In this regard, the use of computational techniques has provided valuable assistance in the design of new enzymes with remarkable catalytic activity. In this paper, hybrid QM/MM molecular dynamics simulations have allowed insights to be gained on the origin of the limited efficiency of a computationally designed enzyme for the Kemp elimination; the HG-3. Comparison of results derived from this enzyme with those of a more evolved protein containing additional point mutations, HG-3.17, rendered important information that should be taken into acc…

0301 basic medicinebiologyChemistryStereochemistryOrganic ChemistryActive siteGeneral Chemistry010402 general chemistry01 natural sciencesCatalysis0104 chemical sciences03 medical and health sciencesMolecular dynamics030104 developmental biologyComputational chemistrybiology.proteinReactivity (chemistry)Oxyanion holeChemistry - A European Journal
researchProduct

Inhibition Mechanism of SARS‐CoV‐2 Main Protease with Ketone‐Based Inhibitors Unveiled by Multiscale Simulations: Insights for Improved Designs**

2021

Abstract We present the results of classical and QM/MM simulations for the inhibition of SARS‐CoV‐2 3CL protease by a hydroxymethylketone inhibitor, PF‐00835231. In the noncovalent complex the carbonyl oxygen atom of the warhead is placed in the oxyanion hole formed by residues 143 to 145, while P1–P3 groups are accommodated in the active site with interactions similar to those observed for the peptide substrate. According to alchemical free energy calculations, the P1′ hydroxymethyl group also contributes to the binding free energy. Covalent inhibition of the enzyme is triggered by the proton transfer from Cys145 to His41. This step is followed by the nucleophilic attack of the Sγ atom on …

KetoneMolecular modelStereochemistrySubstituentMolecular Dynamics SimulationSARS‐CoV‐2 Inhibitors | Hot PaperCatalysisQM/MM3CL proteasechemistry.chemical_compoundCatalytic DomaininhibitorsHumansHydroxymethylProtease InhibitorsCoronavirus 3C ProteasesResearch Articleschemistry.chemical_classificationPF-00835231Binding SitesbiologySARS-CoV-2molecular modelingActive siteCOVID-19General ChemistryGeneral MedicineKetonesCOVID-19 Drug TreatmentKineticschemistryCovalent bondDrug Designbiology.proteinThermodynamicsOxyanion holeResearch ArticleAngewandte Chemie
researchProduct